Some More Results on Power 3 Mean Graphs

Sreeji.S ${ }^{1}$, Sandhya.S. ${ }^{\mathbf{2}}$

Author 1: Research Scholar
Sree Ayyappa College for Women, Chunkankadai.
Author 2 : Assistant Professor, Department of Mathematics,
Sree Ayyappa College for Women, Chunkankadai. [Affiliated to Manonmaniam Sundararanar University, Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]
Email : sreejisnair93@gmail.com ${ }^{1}$
sssandhya2009@gmail.com ${ }^{2}$

Abstract

: A graph G with p vertices and q edges is called a power -3 mean graph, if it is possible to label the vertices $v \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots ., q+1$ in such a way that in each edge $e=u v$ is labeled with $f(e=u v)=$ $\left\lceil\left(\frac{x^{3}+y^{3}}{2}\right)^{\frac{1}{3}}\right\rceil$ or $\left\lfloor\left(\frac{x^{3}+y^{3}}{2}\right)^{\frac{1}{3}}\right\rfloor$. Then, the edge labels are distinct. In this case f is called Power 3 Mean labeling of G.In this case, f is a Power 3 mean labeling of G and G is called a Power 3 Mean Graph.

Key words:

Graph, Power 3 Mean Graphs, Path,Cycle,Complete bipartite graphs.

Introduction:

The graph considered here will be finite, undirected and simple.The vertex set is denoted by $V(G)$ and the edge set is denoted by $E(G)$.For all detailed survey of graph labeling we refer Gallian[1].For all other standard terminology and notations we follow Harary[2].S.S.Sandhya and S.Sreeji introduced the concept of Power 3 Mean labelling of graphs.The definition and other informations which are useful for the present investigation are given below.

Definition:1.1: A walk in which $u_{1}, u_{2}, u_{3}, \ldots \ldots u_{n}$ is distinct is called a path.A path on n vertices is denoted by P_{n}.

Definition:1.2: A closed path is called a cycle. A cycle on n vertices is denoted by C_{n}.

Definition:1.3: The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by
one copy of G_{1} and $\left|G_{1}\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition:1.4: A graph G is said to be complete if every pair of its distinct vertices are adjacent.A complete graph on n vertices is denoted by K_{n}.

Definition:1.5: An (n, t) - kite graph consists of a cycle of length n with t edges path attached to one vertex of a cycle.

Definition:1.6: A complete bipartite graph is a complete graph with bipartition $\left(V_{1}, V_{2}\right)$ such that every vertex of V_{1} is joined to all the vertices of V_{2}.It is denoted by $K_{m, n}$ where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$.

Theorem:1.7: Any path is a Power 3 Mean Graph.

Theorem:1.8: Any cycle is a Power 3 Mean Graph.

Theorem:1.9: Combs are Power 3 Mean Graph.

Theorem:1.10: Complete graph is a Power 3 mean graph iff $n<3$.

Theorem:1.11: $K_{1, n}$ is a Power 3 mean graph iff $n \leq 8$

2.Main Results:

Theorem:2.1

Let P_{n} be the path and G be the graph obtained from P_{n} by attaching C_{3} in both the ends of P_{n}.Then G is a Power 3 Mean Graph.

Proof:

Let P_{n} be a path $u_{1}, u_{2}, u_{3}, \ldots \ldots u_{n}$ and $v_{1} u_{1} u_{2}, v_{2} u_{n-1} u_{n}$ be the triangles which are connected to the path at the end.

Define a function

$$
\begin{gathered}
f: V(G) \rightarrow 1,2, \ldots \ldots q+1 \\
f\left(u_{i}\right)=i+1,1 \leq i \leq n-1 \\
f\left(u_{n}\right)=n+3 \\
f\left(v_{1}\right)=1 \\
f\left(v_{2}\right)=n+2
\end{gathered}
$$

Then the edges are labeled as,

$$
f\left(u_{1} v_{1}\right)=1
$$

$$
f\left(u_{n-1} v_{2}\right)=n+1
$$

$$
f\left(u_{n} v_{2}\right)=n+3
$$

$$
f\left(u_{n-1} u_{n}\right)=n+2
$$

$$
f\left(u_{i} u_{i+1}\right)=i+2 ; 1 \leq i \leq n-1
$$

Hence f is a Power 3 Mean labeling.

Example 2.2:

A Power 3 mean labeling of G obtained from P_{7} is given below.

Figure : 1

Theorem: 2.3:

Let G be the graph obtained by attaching a pendant edge to both the sides of each vertex of a path P_{n}. Then G is a Power 3 Mean Graph.

Proof:

Let G be a graph obtained by attaching pendant edges to both the sides of each ertex of a path P_{n}.

Let u_{i}, v_{i} and $w_{i} ; 1 \leq i \leq n$ be the new vertices of G.

Define a function

$$
\begin{aligned}
f: V(G) & \rightarrow\{1,2,3, \ldots, q+1\} \text { by } \\
f\left(u_{i}\right) & =3 i-2 ; 1 \leq i \leq n \\
f\left(v_{i}\right) & =3 i ; 1 \leq i \leq n \\
f\left(w_{i}\right) & =3 i-1 ; 1 \leq i \leq n
\end{aligned}
$$

The edge labels are,

$$
\begin{gathered}
f\left(u_{i} u_{i+1}\right)=3 i ; 1 \leq i \leq n \\
f\left(u_{i} v_{i}\right)=3 i-1 ; 1 \leq i \leq n \\
f\left(u_{i} w_{i}\right)=3 i-2 ; 1 \leq i \leq n
\end{gathered}
$$

Hence f is a Power 3 mean labeling.

Example 2.4:

The graph obtained from P_{6} is given below.

Figure : 2

Theorem: 2.5:

Let G be the graph obtained by attaching each vertex of P_{n} to the central vertex of $K_{1,2}$. Then G is a Power 3 Mean Graph.

Proof:

Let P_{n} be the path $u_{1} u_{2} \ldots \ldots . u_{n}$ and let v_{i}, w_{i} be the vertices of $K_{1,2}$ which are attached to the vertex u_{i} of P_{n}.

Define a function

$$
f: V(G) \rightarrow\{1,2,3, \ldots, q+1\} \text { by }
$$

$$
f\left(u_{i}\right)=3 i-2 ; 1 \leq i \leq n
$$

$$
f\left(v_{i}\right)=3 i-1 ; 1 \leq i \leq n
$$

$$
f\left(w_{i}\right)=3 i ; 1 \leq i \leq n
$$

The edge labels are,

$$
\begin{gathered}
f\left(u_{i} u_{i+1}\right)=3 i ; 1 \leq i \leq n \\
f\left(u_{i} v_{i}\right)=3 i-2 ; 1 \leq i \leq n \\
f\left(u_{i} w_{i}\right)=3 i-1 ; 1 \leq i \leq n
\end{gathered}
$$

Hence , f is a Power 3 mean labeling.

Example 2.6:

Power 3 mean labeling of G obtained from P_{4} is given below.

Figure : 3
Theorem: 2.7:
Let G be the graph obtained by attaching each vertex of P_{n} to the central vertex of $K_{1,3}$. Then G is a Power 3 Mean Graph.

Proof:
Let P_{n} be the path $u_{1} u_{2} \ldots \ldots . u_{n}$ and let v_{i}, w_{i} be the vertices of $K_{1,3}$ which are attached to the vertex u_{i} of P_{n}.

Define a function

$$
\begin{aligned}
& f: V(G) \rightarrow\{1,2,3, \ldots, q+1\} \text { by } \\
& f\left(u_{i}\right)=4 i-3 ; 1 \leq i \leq n \\
& f\left(v_{i}\right)=4 i-2 ; 1 \leq i \leq n \\
& f\left(w_{i}\right)=4 i-1 ; 1 \leq i \leq n \\
& f\left(t_{i}\right)=4 i ; 1 \leq i \leq n
\end{aligned}
$$

The edge labels are,

$$
f\left(u_{i} u_{i+1}\right)=4 i ; 1 \leq i \leq n
$$

$$
\begin{aligned}
& f\left(u_{i} v_{i}\right)=4 i-3 ; 1 \leq i \leq n \\
& f\left(u_{i} w_{i}\right)=4 i-2 ; 1 \leq i \leq n \\
& f\left(u_{i} t_{i}\right)=4 i-1 ; 1 \leq i \leq n
\end{aligned}
$$

Hence f is a Power 3 mean labeling.

Example 2.8:

Power 3 mean labelling of G obtained from $P_{4} \odot K_{1,3}$ is given below.

Figure : 4
Theorem: 2.9:
A (m, n) - Kite graph is a Power 3 mean graph.

Proof:

Let $u_{1} u_{2} \ldots \ldots . u_{m} u_{1}$ be the given cycle of length $m v_{1} v_{2} \ldots \ldots v_{n}$ be the given path of length n.

Define a function

$$
\begin{aligned}
& f: V(G) \rightarrow\{1,2,3, \ldots, q+1\} \text { by } \\
& f\left(u_{i}\right)=i ; 1 \leq i \leq m \\
& f\left(v_{i}\right)=m+i ; 1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct.

Hence (m, n)- Kite graph is a Power 3 mean graph.

Example 2.10:

The Power 3 mean labelling of $(5,6)$ Kite graph is given below.

Figure : 5
Theorem: 2.11:
Let G be the graph obtained by joining a vertex of degree two of a comb. Then G is a Power 3 Mean Graph.

Proof:

Let the vertex set of a comb be $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots ., v_{n}\right\}$.Let P_{n} be the path $u_{1} u_{2} \ldots \ldots . u_{n}$.Join a vertex v_{i} to $u_{i}, 1 \leq i \leq n$.Let G be a graph obtained by joining a pendent vertex w to u_{n}.

Define a function

$$
\begin{aligned}
f: V(G) & \rightarrow\{1,2,3, \ldots, q+1\} \text { by } \\
f\left(u_{i}\right) & =2 i-1 ; 1 \leq i \leq n \\
f\left(v_{i}\right) & =2 i ; 1 \leq i \leq n \\
f(w) & =2 n+1 ; 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labelled as,

$$
\begin{gathered}
f\left(u_{i} u_{i+1}\right)=2 i ; 1 \leq i \leq n-1 \\
f\left(u_{i} v_{i}\right)=2 i-1 ; 1 \leq i \leq n
\end{gathered}
$$

$$
f\left(u_{n} w\right)=2 n
$$

Hence f is a Power 3 mean labelling of G.

Example 2.12:

Power 3 mean labelling of G with 11 vertices and 10 edges is given below.

Figure : 6
In the similar manner, we can see the Power 3 Mean Labeling of G obtained by joining a pendant vertex with a vertex of degree two on both ends of a comb graph.Power 3 Mean labeling of G with 10 vertices and 9 edges is shown below.

Figure : 7

Conclusion:

All graphs are not Power 3 mean graphs.It is very interesting to investigate graphs which admits Power 3 Mean labelling. In this paper we proved that some
graphs are Power 3 Mean graphs. It is possible to investigate similar results for several other graphs.

Aknowledgement:

The authors thank the referees for their comments and valuable suggestions.

References:

[1] Chartrand g.Lesniak L.Graphs and Digraphs, 4 th ed.CRC Press 2004.
[2] J.A.Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of combinatorics(2013).
[3] Harary.F (1988), Graph Theory, Narosa publishing House, New Delhi.
[4] S.Somasundaram and R.Ponraj, "Mean Labeling of graphs", National Academy of Science Letters vol.26, p.210-213.
[5] S.Somasundaram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling of Graphs", communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
[6] S.Sreeji, S.S.Sandhya "Power 3 Mean Labeling of Graphs" International Journal of Mathematical Analysis, ISSN NO: 13147579 Vol.14, 2020, no. 2, 51-59.

