Some More Results on Power 3 Mean Graphs

Sreeji.S¹, Sandhya.S.S²

Author 1: Research Scholar

Sree Ayyappa College for Women, Chunkankadai.

Author 2: Assistant Professor, Department of Mathematics,

Sree Ayyappa College for Women, Chunkankadai.

[Affiliated to Manonmaniam Sundararanar University,

Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]

Email : sreejisnair93@gmail.com1

sssandhya2009@gmail.com²

Abstract:

G with p vertices graph and Α q edges is called a power -3 mean graph, if it is possible to label the vertices $v \in V$ with distinct labels f(x) from 1,2, ..., q + 1 in such a way that in each edge e = uv is f(e = uv) =labeled with $\left[\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right] or \left|\left(\frac{x^3+y^3}{2}\right)^{\frac{1}{3}}\right|$. Then , the edge labels are distinct. In this case f is called Power 3 Mean labeling of G.In this case, f is a Power 3 mean labeling of G and G is called a Power 3 Mean Graph.

Key words:

Graph, Power 3 Mean Graphs, Path,Cycle,Complete graph,Complete bipartite graphs.

Introduction:

The graph considered here will be finite, undirected and simple. The vertex set is denoted by V(G) and the edge set is denoted by E(G). For all detailed survey of graph labeling we refer Gallian[1]. For all other standard terminology and notations we follow Harary[2].S.S.Sandhya and S.Sreeji introduced the concept of Power 3 Mean labelling of graphs. The definition and other informations which are useful for the present investigation are given below.

Definition:1.1: A walk in which $u_1, u_2, u_3, \dots, u_n$ is distinct is called a path. A path on *n* vertices is denoted by P_n .

Definition:1.2: A closed path is called a cycle. A cycle on n vertices is denoted by C_n .

Definition:1.3: The corona of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by one copy of G_1 and $|G_1|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 .

Definition:1.4: A graph *G* is said to be complete if every pair of its distinct vertices are adjacent. A complete graph on n vertices is denoted by K_n .

Definition:1.5: An (n, t)- kite graph consists of a cycle of length n with t edges path attached to one vertex of a cycle.

Definition:1.6: A complete bipartite graph is a complete graph with bipartition (V_1, V_2) such that every vertex of V_1 is joined to all the vertices of V_2 . It is denoted by $K_{m,n}$ where $|V_1| = m$ and $|V_2| = n$.

Theorem:1.7: Any path is a Power 3 Mean Graph.

Theorem:1.8: Any cycle is a Power 3 Mean Graph.

Theorem:1.9: Combs are Power 3 Mean Graph.

Theorem:1.10: Complete graph is a Power 3 mean graph iff n < 3.

Theorem:1.11: $K_{1,n}$ is a Power 3 mean graph iff $n \le 8$

2.Main Results:

Theorem:2.1

Let P_n be the path and *G* be the graph obtained from P_n by attaching C_3 in both the ends of P_n . Then *G* is a Power 3 Mean Graph.

Proof:

Let P_n be a path $u_1, u_2, u_3, \dots, u_n$ and $v_1u_1u_2, v_2u_{n-1}u_n$ be the triangles which are connected to the path at the end.

Define a function

$$f: V(G) \to 1, 2, \dots, q + 1$$
 by
 $f(u_i) = i + 1, \ 1 \le i \le n - 1,$
 $f(u_n) = n + 3$
 $f(v_1) = 1$
 $f(v_2) = n + 2$

Then the edges are labeled as,

$$f(u_1v_1) = 1$$

$$f(u_{n-1}v_2) = n + 1$$

$$f(u_nv_2) = n + 3$$

$$f(u_{n-1}u_n) = n + 2$$

 $f(u_i u_{i+1}) = i + 2; \ 1 \le i \le n - 1$

Hence f is a Power 3 Mean labeling.

Example 2.2:

A Power 3 mean labeling of G obtained from P_7 is given below.

Figure : 1

Theorem: 2.3:

Let *G* be the graph obtained by attaching a pendant edge to both the sides of each vertex of a path P_n . Then *G* is a Power 3 Mean Graph.

Proof:

Let G be a graph obtained by attaching pendant edges to both the sides of each ertex of a path P_n .

Let u_i, v_i and $w_i; 1 \le i \le n$ be the new vertices of *G*.

Define a function

$$f: V(G) \to \{1, 2, 3, \dots, q + 1\} \text{ by}$$
$$f(u_i) = 3i - 2; 1 \le i \le n$$
$$f(v_i) = 3i; 1 \le i \le n$$
$$f(w_i) = 3i - 1; 1 \le i \le n$$

The edge labels are,

$$f(u_{i}u_{i+1}) = 3i; 1 \le i \le n$$
$$f(u_{i}v_{i}) = 3i - 1; 1 \le i \le n$$
$$f(u_{i}w_{i}) = 3i - 2; 1 \le i \le n$$

Hence f is a Power 3 mean labeling.

Example 2.4:

The graph obtained from P_6 is given below.

Figure : 2

Theorem: 2.5:

Let *G* be the graph obtained by attaching each vertex of P_n to the central vertex of $K_{1,2}$. Then *G* is a Power 3 Mean Graph.

Proof:

Let P_n be the path $u_1u_2 \dots \dots u_n$ and let v_i, w_i be the vertices of $K_{1,2}$ which are attached to the vertex u_i of P_n .

Define a function

$$f: V(G) \to \{1, 2, 3, \dots, q + 1\} \text{ by}$$
$$f(u_i) = 3i - 2; 1 \le i \le n$$
$$f(v_i) = 3i - 1; 1 \le i \le n$$
$$f(w_i) = 3i; 1 \le i \le n$$

The edge labels are,

$$f(u_i u_{i+1}) = 3i; \ 1 \le i \le n$$

$$f(u_i v_i) = 3i - 2; \ 1 \le i \le n$$

$$f(u_i w_i) = 3i - 1; \ 1 \le i \le n$$

Hence, f is a Power 3 mean labeling.

International Journal of Scientific & Engineering Research Volume 11, Issue 2, February-2020 ISSN 2229-5518

Example 2.6:

Power 3 mean labeling of G obtained from P_4 is given below.

Hence f is a Power 3 mean labeling.

Example 2.8:

Power 3 mean labelling of *G* obtained from $P_4 \odot K_{1,3}$ is given below.

Figure : 3

Theorem: 2.7:

Let *G* be the graph obtained by attaching each vertex of P_n to the central vertex of $K_{1,3}$. Then *G* is a Power 3 Mean Graph.

Proof:

Let P_n be the path $u_1u_2 \dots \dots u_n$ and let v_i, w_i be the vertices of $K_{1,3}$ which are attached to the vertex u_i of P_n .

Define a function

$$f: V(G) \to \{1, 2, 3, \dots, q + 1\} \text{ by}$$

$$f(u_i) = 4i - 3; 1 \le i \le n$$

$$f(v_i) = 4i - 2; 1 \le i \le n$$

$$f(w_i) = 4i - 1; 1 \le i \le n$$

$$f(t_i) = 4i; 1 \le i \le n$$

The edge labels are,

$$f(u_i u_{i+1}) = 4i; \ 1 \le i \le n$$

Theorem: 2.9:

A (m,n)- Kite graph is a Power 3 mean graph.

Proof:

Let $u_1u_2 \dots \dots u_m u_1$ be the given cycle of length $m v_1v_2 \dots \dots v_n$ be the given path of length n.

Define a function

$$f: V(G) \to \{1, 2, 3, \dots, q + 1\}$$
 by
 $f(u_i) = i; 1 \le i \le m$
 $f(v_i) = m + i; 1 \le i \le n$

Then the edge labels are distinct.

International Journal of Scientific & Engineering Research Volume 11, Issue 2, February-2020 ISSN 2229-5518

Hence (m, n)- Kite graph is a Power 3 mean graph.

Example 2.10:

The Power 3 mean labelling of (5,6)-Kite graph is given below.

Theorem: 2.11:

Let G be the graph obtained by joining a vertex of degree two of a comb.Then G is a Power 3 Mean Graph.

Proof:

Let the vertex set of a comb be $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$.Let P_n be the path $u_1u_2 ... u_n$.Join a vertex v_i to u_i , $1 \le i \le n$.Let *G* be a graph obtained by joining a pendent vertex *w* to u_n .

Define a function

$$f: V(G) \to \{1, 2, 3, \dots, q + 1\} \text{ by}$$
$$f(u_i) = 2i - 1; 1 \le i \le n$$
$$f(v_i) = 2i; 1 \le i \le n$$
$$f(w) = 2n + 1; 1 \le i \le n$$

Then the edges are labelled as,

$$f(u_i u_{i+1}) = 2i ; 1 \le i \le n - 1$$
$$f(u_i v_i) = 2i - 1 ; 1 \le i \le n$$

$$f(u_n w) = 2n.$$

Hence f is a Power 3 mean labelling of G.

Example 2.12:

Power 3 mean labelling of G with 11 vertices and 10 edges is given below.

Figure : 6

In the similar manner, we can see the Power 3 Mean Labeling of G obtained by joining a pendant vertex with a vertex of degree two on both ends of a comb graph.Power 3 Mean labeling of G with 10 vertices and 9 edges is shown below.

Figure : 7

Conclusion:

All graphs are not Power 3 mean graphs.It is very interesting to investigate graphs which admits Power 3 Mean labelling. In this paper we proved that some graphs are Power 3 Mean graphs. It is possible to investigate similar results for several other graphs.

Aknowledgement:

The authors thank the referees for their comments and valuable suggestions.

References:

[1] Chartrand g.Lesniak L.Graphs and Digraphs,4 th ed.CRC Press 2004.

[2] J.A.Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of combinatorics(2013).

[3] Harary.F (1988), Graph Theory, Narosa publishing House, New Delhi.

[4] S.Somasundaram and R.Ponraj, "Mean Labeling of graphs", National Academy of Science Letters vol.26, p.210-213.

[5] S.Somasundaram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling of Graphs", communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.

[6] S.Sreeji, S.S.Sandhya "Power 3 Mean Labeling of Graphs" International Journal of Mathematical Analysis, ISSN NO: 1314-7579 Vol.14, 2020, no. 2, 51-59.

